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S O M E  A S P E C T S  O F  T H E  S T A B I L I T Y  O F  V E R T I C A L  

P N E U M O T R A N S P O R T  O F  S O L I D  P A R T I C L E S  

Yu. S. Teplitskii and V. I. Kovenskii UDC 533.6 

The upper boundary of the critical transition region separating stable (normal) pneumotransport from a 

through two-phase flow with internal circulation of the particles is determined on the basis of an analysis of 

pressure losses in a two-phase flow in a vertical channel. Simple dimensionless relations for calculation of 

the velocities Ucl and Uopt determining the lower and upper boundaries of the transition region are obtained. 

Vertical transport  of solid particles by a gas is widely used in industrial installations [1 ]. A number  of 

works  [1 -5 ]  p e r f o r m e d  ma in ly  pr io r  to 1970 a re  devo ted  to the  s t u d y  of this process .  T h e  p rob lem of 

pneumotranspor t  stability, which is reduced to the description of the phenomenon of clogging-up of particles and  

the search for acceptable formulas for calculation of the velocity of clogging-up Ucl, has occupied an important  place 

in these studies. The  available recommendations for the calculation of Ucl [1, 3, 5 ] are  obtained for very narrow 

ranges of variation of experimental  conditions and are presented,  as a rule, in dimensional form, and practical 

application of them is very limited. The  whole transition region separating stable pneumotranspor t  from a through 

two-phase flow with internal  circulation of the particles has not been studied in the li terature,  and recommendat ions  

on calculation of the width and location of this zone, which are very important  in practice, are absent .  

Wide use of new promising technologies on the basis of a circulating fluidized bed [6 ] and a throughput  

fluidized system with internal  circulation of the particles has served at present  as an impetus for continuation of 

works on the problem of the stability of two-phase flows in vertical channels.  A circulating fluidized bed (especially 

its t ransport  zone) is very similar to a classical pneumotransport  system and converts to it with increase in the gas 

velocity. Here  the problem of the stability of these systems can be t reated as the s tudy of the laws governing the 

hydrodynamics  of a vertical flow in the transition region separating the mode of stable pneumotranspor t  from the 

mode of a two-phase flow with internal circulation of the particles (with clogging-up of the particles) of the type of 

a circulating fluidized bed. 

The  aim of the present  paper is to determine the location of the critical transition region on the basis of 

an analysis of the pressure losses in a two-phase flow in a vertical channel  and to obtain universal dimensionless  

formulas for the calculation of the lower (Ud) and upper (Uop t) boundaries  of this zone. 

We write an expression for the pressure drop on a stabilized portion of a two-phase flow of length AI: 

A p = p s ( 1 - e )  g A l + 4 r A l  D " (1) 

We note that in the case of pneumotranspor t  the value of the tangential  stress on the riser wall ~ > 0 (particles at 

the wall move vertically upward),  and in the case of a circulating fluidized bed �9 < 0 (particles at the wall move 

downward producing internal  circulation). Experimental  data on the values of z for both z > 0 [7, 8 ] and r < 0 

[8 ] are available in the literature. It was found that ~ depends on the following parameters:  

T = f (U ,  Js, d, Ps). (2) 

T he  above-ment ioned studies were conducted in air, and therefore,  in the general case dependence  (2) should be 

writ ten in the form 
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Fig. 1. Tangential  friction in vertical two-phase flows: 1) d = 0.113 mm, 2) 

0.1, 3) 0.2, 4) 1.18, 5) 0.06; I-4) [7], 5) [8]. 

Fig. 2. Generalization of experimental data on the value of tangential friction 

in vertical pneumotransport.  For notation see Fig. I. 

r = f ( U ,  Js, d, ps, Pf, v, g ) ,  (3) 

with gas characteristics and the quantity g being added. An analysis of experimental data was made on the basis 

of similarity theory. Using the n- theorem of dimensionality theory [9 ], we can present (3) in the dimensionless 

form 

,4, 
pfu 2 - /  , - . .  s (U - Ut) v pf 

The combination Js = l s / ( p s ( U  - Ut)) characterizes the mean value of the particle concentration in the throughput 

system, and experience in employment of this complex turned out to be very fruitful in the description of the 

distribution of the particle concentration and the coefficient of heat t ransfer  over the height of the transport  zone 

of a circulating fluidized bed [10 ]. The velocity of floating Js is unambiguously determined by the second and  third 

combinations on the r ight-hand side of (4), and the gas velocity enters both Js and Re -- U d / v .  Therefore,  the 

assumption of the following simplified form of (4) is fully substantiated: 

l" - / (?b-  (5) 
pft7  

Figure 1 presents data of [7, 8 ] in coordinates corresponding to (5). It is clearly seen that  the test points 
are divided into two groups that differ in the values of Js. When Js < 1.5-10 -2, the points are grouped rather  

regularly, thus indicating the existence of a relation of the type of (5). This is the region of classical pneumo- 

transport,  where T > 0. When Js > 1.5.10 -2, a ra ther  considerable scatter of the test points with r > 0 and  

r < 0 is observed; this indicates instability and intermittency of particle motion at the wall. This speaks in favor 

of the appearance of clogging-up (internal circulation of the particles) in the system and its transition to the mode 
of a circulating fluidized bed. It is not possible as yet to establish in this transition region any law for describing 

the values of the tangent ia l  s tress on the riser wall (5), and  therefore  in what  follows we cons ider  on ly  

pneumotransport modes with $ > 0. In Fig. 2 these data are given separately, and the extremely simple formula 
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Fig. 3. Pressure  losses in a pneumotransport  system (Ps - 2500 k g /m  3, pf -- 

1.16): a) D = 0.1 m: 1) Js-- 0.5 kg/ (m2.sec) ,  2) 5, 3) 25, 4) 50; b) Js = 50 

kg/(m2"sec) :  I) D- -  0.05 m, 2) 0.1, 3) 0.3, 4) 0.5. 

z" 
- 0 .17 V ~ s ,  (6)  pfu  2 

indicating proportionali ty of the tangential stress on the riser wall to the square root of the particle concentrat ion,  

is obtained on the basis of these data. As is known from the l i terature [1, 10], the coefficient of heat  t ransfer  

between a gas-suspension flow and the riser wall is also near ly  proportional to t h e  square root of the particle 

concentration. This  evidently indicates the existence of an analogy between t ransport  of heat and momentum in 

these systems. With account for (6) Eq. (2) will have the form (the case of pneumotransport)  

Ap 1.36 pfu  2 (7) 
A l  - P s  ( l  - e)  g + " - f f  - 2 

The  obtained relation (7) allows one to analyze the process of the "pneumot ranspor t -c i rcu la t ing  fluidized bed" 

transition near  the upper boundary  of the critical region with a smooth decrease in the gas velocity. 

We write a relation between the mass flow of the particles and their  concentration: 

J s = P s ( U -  U~) 1 - e  , ( 8 )  

where /~t is the floating velocity of the particles under  the conditions of constraint.  Using the well-known Todes  

formula [ 11 ] for calculation of U~t, we can write 

U~ 18 + 0.6 ~ 4.7s 

U t 18 + 0.6 x /A' -~  ~ 
(9 )  

We obtained a simpler expression for the f ight-hand side of (9): 

* - 0 . 0 5  u, 5 . 4 A t  -- Ar _ 105), - e (101 (9a)  
Ut 

which is a generalizat ion of the well-known R i c h a r d s o n - Z a k i  formula [3 ]. The  estimates made showed that  unde r  

pneumotranspor t  conditions U~t/U t -- 0 . 7 5 - 0 . 9 8  and U usually exceeds Ut substantially.  This makes it possible to 

assume in (8) that U - Lr~t ~-- U - Ut. Due to the sufficient closeness of e to 1 (e = 0 .94 -0 .99 )  it is admissible to 

present (8) in the final simplified form 

Js = Ps (U - Ut) (1 - e ) .  (10) 

With account for (10) expression (7) for Ap/Al  will be 
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A dimensionless form of (11) is 

1. 6 1 
a t  - v - at  + - - 6 -  ( d -  v , )  2 ( l l )  

A (p/pfU 2) Ps Js 
A (l/D) Pf Fr u 

_ _  + 0 . 6 8 ~ - s ,  (12) 

where F r y  = UX/gD. 
The  function in the r ight-hand side of (11) determines the dependence  of Ap/Al on the main governing 

parameters  of the two-phase system: .Is, U, pf, Ps, Ut, and D. Figure 3 shows sets of curves Ap/Al =f(LO constructed 

by (11) for specific conditions. A characteristic feature of these curves is that  each of them has a minimum at a 

certain gas velocity Uop t. It is obvious that this point is the lower boundary  of stable pneumotranspor t  and  the upper  

boundary  of the transition region characterized by an increase in pressure losses with a decrease  in the working 

velocity of the gas (OAp/OU < 0). To calculate /flop t we can use the following equation determining the minimum 

of Ap / Al: 

0 (Ap/Al) = 0 ( 1 3 )  
OU 

Substitution of the expression for Ap/Al in the form of (I 1) into (13) gives an algebraic equation of the fifth o rder  

for determining Uopt: 

5 2 3  1 U ~  t y + T y  U t - T y  - A = 0 ,  (14) 

where A ~' 0.98gDCJsp s//of; y = ~/Uop t - U t . 
In dimensionless form Eq. (14) will be 

5 2 3 1 z +-~z - 3 z - - B = O ,  (15) 

where z --- ((Uop t - Ut)/Ut)~; B = (ps/pf)t'2v'-~s/Frt. 
Equation (15) has a single positive root zl (the Descartes theorem [12 ]) that determines  the sought quanti ty 

/-]opt: 

Uop t = U t (I  + z2).  (16) 

It turned out to be possible to approximate the numerical solution of (15) within a wide range of values of 

the parameter  B (10 -3 -< B _< 10 6) by simple power-law dependences  of zl on B, which led to the following 

expressions for Uopt: 

a) B _< 1 /3  

b) B > 1 /3  

Uopt = Ut (4 + O.65BO8) ", (17) 

Uop t = Ut (1 + B~ . (18) 

The errors of approximation do not exceed 1% for (17) and 3~o for (18). 

The  obtained equations (17) and (18) reflect the dependence of the velocity Uopt on the determining factors. 

The  parameter  B unambiguously determining Uopt can be called the stability parameter  of the pneumotranspor t  
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Fig. 5. Generalization of experimental data on velocities of clogging-up Ud: a) 

small particles: 1-3) [13 ] (d -- 0.04 mm, 0.1, 0.28, respectively); 4-7) [14 ] (d 

= 0.12 mm, 0.151, 0.225, 0.256, respectively); b) large particles. For notation 

see Fig. 4. 

system. Figure 4 shows a comparison of data calculated by (17) and (18) and experimental data o n  Uop t [4 ,  5 ]. 

The root-mean-square deviation of the experimental data from the calculated data is 15%. 

It is of interest to analyze the dependence of Uop t on such an important parameter as the riser diameter. 

In [5 ] this problem was studied specially by employing risers of three sizes: 0.055, 0.075, and 0.098 m. The results 

of the study showed that Uopt is virtually independent of D. The obtained recommendations (17) and (18) allow 

for the effect of this important factor, which as is seen from Fig. 3b, is really rather weak. 

The porosity of the two-phase system at the point U = Uopt is calculated by a formula following from (10): 

top t = 1 - ( J s )op t  , (19) 

where (Js)opt = J s / (Ps (Uopt -  /-It)). 
Now we analyze the available literature data on the position of the lower boundary of the transition region, 

i.e., on the values of the velocity of clogging-up of the particles [4, 13, 141. By analogy with formula (18) (for the 

data of [4, 13, 14 ] the value of B is always larger than 1/3) a generalization of the experimental data on Ud was 

sought in the form of the dependence 

U d -  Ut (20) 
_ k B  n " 

U t  

Processing of the mentioned data showed that a function of the form of (20) adequately generalizes only the 

experimental data [13, 14 ] for small particles (d _< 0.28 mm) (Fig. 5a): 
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Fig. 6. Influence of the mass flow of the particles on the value of the porosity 

at the velocity of clogging-up. For notation see Figs. 4, 5. Js, kg/ (m2"sec)-  

Fig. 7. Comparison of experimental  values of 1 - ec] and values calculated by 

formula (25). For notation see Figs. 4, 5. 

Uc! - Ut _ 0.11B 0"5 . (21) 
v, 

T he  exper imenta l  da ta  of Zenz [4 ] for larger particles (0.586 < d < 1.67) are  general ized by the  somewhat  
different  relation (Fig. 5b) 

U c l -  U, _ 0.02J2 (22) 
v, 

We note that formula (22) agrees satisfactorily with a relation for calculation of Ud known from the l i terature [15 ]: 

U d = 32.3U s + 0.97Ut,  (23) 

which was obtained from (8) for e -- ec| = 0.97 and U~t/e ~ Ut. In fact, expanding the expression for Js and 

substituting,of = 1.2 kg /m 3, Ps = 2400 kg /m a, we obtain from (22) a dimensional formula for Ucl 

Ucl = 38.4U s + Ut, (24) 

which is close to (23). This evidently indicates that a generalization of the type of (22) is valid in sys tems in which 

the porosity at the clogging-up point does not depend on the value of the mass flow of the particles Js (formula 

(23) was obtained under  precisely this assumption).  Figure 6, where the experimental  values of ed obta ined  in [4 ] 

are shown, confirms this. The  same figure shows the values of eel from [14 ]. As is seen, in this case the dependence  

ecl(Js) exists and,  consequently,  in these systems relation (21) is valid. 

The  porosity at the point of clogging-up is calculated by a formula similar to (19): 

= 1 - ( 2 5 )  

where (Js)cl = Js / (ps (Ucl  - Ut))- Figure 7 presents experimental  values of ec! calculated by (25). For  the data of 

Zenz [4 ] obtained in beds of large particles, the values of ecl, as was noted ealier, do not depend on ds, and for 

this case an equation not involving Ucl was derived: 

%1 = 0.684 + 0.095 In Fr t , (26) 

describing the experimental  values of ecl with an error  of - 1 0 %.  
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The obtained expressions (17), (18), (21), and (22) determine the boundaries and location of the critical 
transition zone with OAp/OU < 0, where the transition from stable (normal) transport of the particles with 

OAp/OU > 0 to modes with clogging-up of the particles and formation of inner circulation loops of them (a system 
of the type of a circulating fluidized bed) occurs with a decrease in the velocity of the gas. These formulas have a 
dimensionless form, are verified within rather wide ranges of variation of the experimental conditions, and are 

convenient for practical use in choosing the mode of operation of apparatuses with throughput two-phase systems. 

N O T A T I O N  

Ar = ( g d a / 1 , , 2 ) ( 1 9 s / l O f  - 1), Archimedes number; d, particle diameter; D, riser diameter; Frt - U2t/gD, Fru 
II, = U2/gD, Froude numbers; g, free-fall acceleration; Js, mass flow of the particles; Js - Js/(,Os(U- Ut)), Js -- 

Js/pfUf, dimensionless flows of the particles; 1, length; Ap, pressure drop; U, gas velocity; Us, velocity of the 
particles related to an empty cross section of the riser (Us --- Js/Ps); Ut, floating velocity of a single particle Cat e = 
1); U~t, floating velocity of a particle under conditions of constraint; e, porosity; v, kinematic viscosity; p, density; 

r, tangential stress on the riser wall. Subscripts: f, gas; s, particles; t, floating of a single particle; cl, clogging-up; 

opt, optimum; eq, equivalent. 

R E F E R E N C E S  

1. I.M. Razumov, Fluidization and Pneumotransport of Bulk Material [in Russian ], Moscow (1972). 

2. F. Zenz, in: Processes in a Fluidized Bed (ed. D. F. Otmer) [Russian translation ], Moscow (1958), pp. 73-91. 
3. M. Leva, Fluidization [Russian translation 1, Moscow (1961). 

4. F. Zenz, Ind. Eng. Chem., 41, No. 12, 2801-2806 (1949). 
5. V.A. Filippov, P. A. Shishov, and Yu. M. Potapov, in: Aerodynamics and Heat and Mass Transfer in Disperse 

Flows (ed. V. A. Filippov) [in Russian l, Moscow (1967), pp. 44-54. 
6. A.P. Baskakov, in: Fluidization (eds. V. G. Ainshtein and A. P. Baskakov) [in Russian 1, Moscow (1991). 
7. P.V. Ovsienko, L. I. Krupnik, and V. G. Ainshtein, Inzh.-Fiz. Zh., 70, No. 6,914-918 (1997). 
8. W.P .M.  van Svaaij, C. Buurman, and J. W. van Brengel, Chem. Eng. Sci., 25, 1818-1820 (1970). 

9. L.I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian 1, Moscow (1965). 
10. Yu. S. Teplitskii, Inzh.-Fiz. Zh., 71, No. 3,447-453 (1998). 
11. O.M. Todes and O. B. Tsitovich, Apparatuses with a Fluidized Grannular Bed [in Russian l, Leningrad (198 I). 

12. A.P.  Mishina and I. V. Proskuryakov, Higher Algebra [in Russian ], Moscow (1965). 
13. W.R. Lewis, E. R. Gilliland, and W. C. Bauer, Ind. Eng. Chem., 41, 1104-1117 (1949). 
14. R.M. Ormiston, Ph. D. Thesis, Cambridge University, England (1966). 

15. L.S. Leung, R. J. Wiles, D. J. Nicklin, Ind. Eng. Chem. Process Des. Develop., 10, No. 2, 183-189 (1971). 

17 


